力学性能试验包括哪些 关于金属疲劳试验

公司简介
健明迪检测提供的力学性能试验包括哪些 关于金属疲劳试验,低周疲劳 低周疲劳:金属在循环载荷作用下,疲劳寿命为102~105次的疲劳断裂。 循环硬化和循环软化现象与位错循环运动有关,具有CMA,CNAS认证资质。
低周疲劳
低周疲劳:金属在循环载荷作用下,疲劳寿命为102~105次的疲劳断裂。
循环硬化和循环软化现象与位错循环运动有关。
在一些退火软金属中,在恒应变幅的循环载荷下,由于位错往复运动和交互作用,产生了阻碍位错继续运动的阻力,从而产生循环硬化。
在冷加工后的金属中,充满位错缠结和障碍,这些障碍在循环加载中被破坏;或在一些沉淀强化不稳定的合金中。由于沉淀结构在循环加载中校破坏均可导致循环软化。
热疲劳:机件在由温度循环变化时产生的循环热应力及热应变作用下发生的疲劳。
热机械疲劳:温度循环和机械应力循环叠加所引起的疲劳。
产生热应力的两个条件:①温度变化②机械约束
冲击疲劳:冲击次数N>105次时,破坏后具有典型的疲劳断口,即为冲击疲劳。

对于其他相关问题,请点击右侧在线咨询,健明迪检测客服将为您分配对应工程师,为您提供更专业的咨询。
疲劳曲线及基本疲劳力学性能
1、疲劳曲线:疲劳应力与疲劳寿命的关系曲线,即S-N曲线。
用途:它是确定疲劳极限、建立疲劳应力判据的基础。
有水平段(碳钢、合金结构钢、球铁等):经过无限次应力循环也不发生疲劳断裂,将对应的应力称为疲劳极限,记为σ-1(对称循环)
无水平段(铝合金、不锈钢、高强度钢等):只是随应力降低,循环周次不断增大。此时,根据材料的使用要求规定某一循环周次下不发生断裂的应力作为条件疲劳极限。

2、疲劳曲线的测定——升降法测定疲劳极限
疲劳过程及机理
疲劳过程:裂纹萌生、亚稳扩展、失稳扩展三个过程。
疲劳寿命Nf=萌生期N0+亚稳扩展期Np
金属材料的疲劳过程也是裂纹萌生相扩展的过程。
裂纹萌生往往在材料薄弱区或高应力区,通过不均匀滑移、微裂纹形成及长大而完成。
疲劳微裂纹常由不均匀滑移和显微开裂引起。主要方式有:表面滑移带开裂;第二相、夹杂物与基体界面或夹杂物本身开裂;晶界或亚晶界处开裂。

金属疲劳特点
疲劳的特点:该破坏是一种潜藏的突发性破坏,在静载下显示韧性或脆性破坏的材料在疲劳破坏前均不会发生明显的塑性变形,呈脆性断裂。
疲劳对缺口、裂纹及组织等缺陷十分敏感,即对缺陷具有高度的选择性。因为缺口或裂纹会引起应力集中,加大对材料的损伤作用;组织缺陷(夹杂、疏松、白点、脱碳等),将降低材料的局部强度,二者综合更加速疲劳破坏的起始与发展。

金属疲劳类型
1、疲劳按应力状态分:弯曲疲劳、扭转疲劳、拉压疲劳、接触疲劳及复合疲劳;
2、疲劳按环境和接触情况分:大气疲劳、腐蚀疲劳、高温疲劳、热疲劳及接触疲劳等。
3、疲劳按应力高低和断裂寿命分:高周疲劳和低周疲劳。

疲劳指金属机件在变动应力和应变长期作用下,由于积累损伤而引起的断裂现象。金属疲劳试验是指通过金属材料实验测定金属材料的σ-1,绘制材料的S-N曲线,进而观察疲劳破坏现象和断口特征,进而学会对称循环下测定金属材料疲劳极限的方法。实验设备一般有疲劳试验机和游标卡尺。 金属疲劳试验
疲劳的破坏过程是材料内部薄弱区域的组织在变动应力作用下,逐渐发生变化和损伤累积、开裂,当裂纹扩展达到一定程度后发生突然断裂的过程,是一个从局部区域开始的损伤累积,最终引起整体破坏的过程。

力学性能试验包括哪些 关于金属疲劳试验
我们的服务
行业解决方案
官方公众号
客服微信

为您推荐
力学性能试验包括哪些 关于金属在冲击载荷下的力学性能

力学性能试验

力学性能试验包括哪些 硬度试验相关问题

力学性能试验

力学性能试验包括哪些 韧度断裂试验相关问题

力学性能试验

力学性能试验包括哪些 拉伸力学试验相关问题

力学性能试验